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The flow of a non-Newtonian fluid with an exponential theological  equation is investigated 
in the ba r r e l  of an extruder  screw with considerat ion of the presence  of circulat ing motion 
of the fluid in it. 

In a hydrodynamic analysis  of the flow of polymer melts  in the ba r re l  of an extruder  screw, one 
usually uses  a plane model  of the screw, i.e., one investigates the flow of a non-Newtonian fluid with an 
exponential theological  equation between two paral lel  plates, one of which is s tat ionary and the other moves 
at a constant veloci ty  in a direct ion opposite to the movement  of the plate, and a p r e s su re  gradient acts  
in the gap between the plates [1-3]. The plane model of a sc rew does not take into account the curvature  
of the sc rew bar re l ,  whose effect on the charac te r i s t i c  of the screw and on the flow pattern increases  
with an increase  of the degree of deviation of the proper t ies  of the mater ia l  being processed  f rom the prop-  
er t ies  of a Newtonian fluid and relat ive depth of the screw barre l .  A cylindrical  model of a sc rew was 
used for taking into account  the curvature  of the sc rew bar re l  in [4, 5]. This model represen ts  two coaxial 
cyl inders ,  one s ta t ionary and the other rotat ing with a constant angular velocity. A tangential p r e s su re  g r a -  
dient acts  angularly in a d i rect ion opposite to that of the rotat ion of the cylinder in the annular gap filled 
with fluid with an exponential rheological  equation. Both these models a s sume that simple shear  occurs  
during flow of the mater ia l .  In the plane model the t ra jec tor ies  of the fluid par t ic les  a r e  parallel  s traight  
l ines,  and in the cyl indrical  model the motion of the fluid par t ic les  occurs  along concentr ic  c i rcles .  

In real i ty  fluid flow in the ba r r e l  of an extruder  screw has a considerably more  complex character .  
Since the tangential velocit ies of the fluid par t ic les  adjacent to the hub (in r eve r sed  motion) a re  directed 
at  an angle to the axis of the screw bar re l ,  then in addition to longitudinal flow along the axis of the screw 
bar re l ,  which de termines  the output, there  a r i s e s  a circulat ing flow in a direct ion perpendicular  to the 
axis of the screw channel. If the fluid is Newtonian, then by vir tue of the l ineari ty of the relat ions between 
the s t r e s s  and s t ra in  ra te  tensors  neither flow has an effect on the other and both flows can be treated 
separately.  If the rheological  equation is more  complex, not l inear,  as in the power law, then general ly 
speaking the t r ansve r se  circulat ing flow will have an effect on the flow in a longitudinal direct ion and 
ul t imately on the output. Complex shear  was investigated in [6] in connection with the plane model of a 
screw. Here we will consider  the flow of a non-Newtonian fluid with an exponential theological  equation 
between infinite coaxial cyl inders  under complex shear  condition as related with the cyl indrical  model of 
a screw. 

1. Let us consider  the motion of a fluid with an exponential rheological  equation in the bar re l  of an 
extruder  sc rew (Fig. la).  The velocity of the fluid par t ic les  can be decomposed into two components,  one 
of which Vx is directed along and the other Vy ac ros s  the ba r re l  axis. We neglect the effect of the edges 
of the sc rew and for  g rea te r  c lar i ty  we will henceforth consider  reversed  motion, considering that the 
casing of the extruder  ro ta tes  about a s ta t ionary screw. To take into account the curvature  of the screw 
bar re l ,  we will use a cyl indrical  model of the extruder  and investigate the fluid flow between two infinite 
coaxial cyl inders  (Fig. lb). The inside cylinder of radius R 1 is s ta t ionary and the outer cylinder of radius 
R 2 ro ta tes  at a constant l inear veloci ty v 0. The x and y axes correspond to the longitudinal and t r ansve r se  
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Fig. i. Schematic diagram of the screw barrel and its 
cylindrical model. 

direct ions  relat ive to the axis of the sc rew channel. Let constant p r e s su re  gradients  OP/0x = A 1 > 0 and 
0 P / 0 y  = A s > 0 act  along these axes in the annular gap, whereby we will consider  A 1 to be given and A 2 

to be the unknown quantity. 

The equations of motion in cyl indrical  coordinates have the fo rm 

1 a (r~%r aP 1 a (r%~) Op (1) 
r Or a~ r Or Oz 

.Assuming that the p re s su re  gradient  along angle 0 P / 8 r  acts  on c i rc les  of radius r 0 = (R t + R2)/2, we can 
wri te  

0P - -  = (Alcos0 + A~sin0) r o, OP _ A2cosa--Alsin0. (2) 
a~ Oz 

Strict ly speaking, the helix angle changes along the depth of the screw barrel .  We will neglect the change 
of 0 due to the radius.  By 0 we mean the value of the helix angle at an average  radius. 

Integrat ing (1) and taking into account (2), we obtain 

%w= ~ r o 1 + ~  tg0 1 + - - 7 ~  ] ,  

Altos0 + 
"t'rz --- 2 'A1"1 r 

(3) 

where C 1 and C 2 a re  constants of integration. 

The rheological  equation in a general  form is wri t ten so [1]: 

~-= ~le f A. 

The effective v iscos i ty  in the case  being considered has the fo rm 
n - - I  

0 

(4) 

(5) 

Taking into account  (3), 

A1 cos 0 

2 

(4), and (5), we obtain the following sys tem of equations: 
n - - i  

0 ( ~ 1 7 6  ~ 

n - - [  

�9 0 ~ - _ _ .  

~ar ] J ar 

(G) 

We introduce dimensionless  quantities 

R~ A~ 
r b R1 AI 

i 

= v o ( 2% 
R 1 "R1AlcosO ) ~' 
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System of Eqs. (6) can be wri t ten  in a d imensionless  fo rm so: 

n - - I  

1-'l-b (l_/_afgO)(l_} Cl~)=a..r,.{ [~._0 (7)]2 -I-\ O~ ]J (OVli~21z ~_~ 0 (~), 
: l - - I  

0 " - - -  Ov~i 

Dividing one equation by the other ,  we obtain the re la t ion  between the components of the s t ra in  ra te  tensor  

0 1 2 b  <a--tgO)(~+~) ~-( (~)= '~(l+atgO'(l+~) OvH 

Using this relat ion,  we can t r a n s f o r m  the sys tem of equation to a fo rm not containing nonlinear t e rms  
with veloci ty  components:  

~_0  ( _ ~ ) = _ ~ l + b  ( l+a tgO)  f(~' C1'cr a ) ( I + C ~ - ) ,  

Ov' I  = ( a - - t g O )  f(~' CI" C2' a ) ( ~ +  C~'~. 
O; cr 

(7) 

Here  

| - -n  

f(~, C x, C,, a): [ ('-~----~b )z(1-C-a,gO)~ (1-i-Ci ~a-~- (a--tgO)2 (~-t- C~12]-~-~ 
�9 ;'s T I j  

Thus, the sys tem of equations was decomposed into two equations, which we can integrate  separate ly .  

Equations (7) must  be solved with the following boundary conditions: 

v i - - -vI i=O when ~-----1, v I=1 ,  vl i=O when .~-----b. (8) 

We in tegra te  Eqs. (7) and sa t is fy  the f i r s t  pair  of boundary conditions (8). As a r e su l t  of integrat ion 
we obtain 

$)I ~ - -  2 T '  
I 

vii -s f(~, C.  C2, a) g +  rig. 

1 

The longitudinal and t r a n s v e r s e  veloci ty  components in the screw b a r r e l  a re  expressed  in t e rms  of 
vI and vii  by the formulas  

v 1 = v I cosO--v n sinO, v~ = vlsinO + VilCOSO. (9) 

We calculate the flow ra te  of the fluid in the d i rec t ion of the axis of the sc rew b a r r e l  and in a t r a n s -  
v e r s e  direct ion.  Taking into account the assumption of the constancy of 0, we can wri te  the express ions  
for  the flow ra tes  in longitudinal and t r a n s v e r s e  di rect ions  per unit width of the b a r r e l  and length of the 
edge, respec t ive ly ,  so: 

b b 

I 1 

Replacing v 1 under the in tegral  sign, according to (9) we obtain 
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Fig. 2. Prof i les  at  l inear veloci t ies  v t (a) and v 2 (b) 
for different values of ~: 1) ~ = 0.7.10-3;  2) 0.37 �9 10-2; 
3) 0.101; 4) ~. 

o 

Q 1 -  1"-~ b -  T (1-~ a ]~g O) cos ~ f ( ~ , C 1 ,  C2, a)(1-j-C1) d~ -~  d~. 
1 1 

a 

- - ( a ' t g O )  sinOa i .f f(:' C~'C~' a) (:-[- ~-~) d:d:" 
1 1 

After changing the order  of integrat ion we have 

b 
l§ (l§ c~ ; ( C1 \ 2 e~=--  2- ~ t(:; c,,c~, ,~) ~+V)(a --;~)d; 

1 

b 

- - ( a - - t g 0 )  sin0 a Sf(~'CI'C2'a)@+~) (b-~)d~" 
1 

Proceeding analogously with the second integral ,  for  flow rate  Q2 we obtain 

b 02 l+b(l@atgo) sinO; ( C1) 
1 

b 

1 

The constants of integrat ion C 1 and C 2 and pa ramete r  a r emain  unknown. They a re  found as a resul t  
of sat isfying the second pair of boundary conditions (8) and f rom the condition of equating the t r ansve r se  
flow ra te  of the fluid to zero. Thus, to find C1, Cz, and a we a r r ive  at the following sys tem of equations: 

b 

2 a . ,  
1 

b 

l 
b ( lo )  

l + b  ( l+a tgO)  sine j" ( 

i b 

1 

2, The values of C1, C2, and a were found and the velocit ies vl, v2, and volume flow rate  Qt were  
calculated on a computer  by numer ica l  methods. The resul t s  were  compared with those obtained ea r l i e r  
in [4], where fluid motion between two cyl inders  under s imple shear  conditions was considered.  In this 
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Fig. 3 Fig. 4 

Fig. 3. Curves of the dependence of the dimensionless  flow ra te  
Qi on the p re s su re  gradient  A t (G /cm 3) for  different velocit ies 
v0: 1) v 0 = 12.5 c m / s e c ;  2) 25; 3) 50. 

Fig. 4. Dependence of the dimensionless  flow ra tes  Q1 on the 
p r e s s u r e  gradient  A 1 (G /cm 3) in the case of simple and com-  
plex shears  for different values of n: 1) n = 0.81; 2) 0.22; 3) 
0.29. 

study the rheological  equation of the fluid was wri t ten in the fo rm 

do) 
r - -  = k l+t m - 1  T .  

dr 

To establ ish a cor respondence  between the cases  of s imple and complex shear  we must  set 
1 

1 - - -  r  ~ n~--~ - - ,  TIo~ k m , ~'o ~ ,  
m cos 0 

where co 0 is the angular veloci ty of rotat ion of the outer cylinder in the case  of simple shear.  The ca l -  
culations were  per formed for  the following values of the paramete rs :  0 = 20", R 1 = 2 cm, R 2 = 2.5 cm, 
co 0 =4.7  sec -1, m = 3.5, k = 0.01 (cm2/G) sec -1. 

In Fig. 2a the profiles of the velocity components along the axis of the screw channel a re  shown by 
the solid lines and the corresponding profiles in the case of simple shear  a re  shown by dashed lines for dif- 
fe ren t  values of the dimensionless  pa ramete r  a .  The difference between the corresponding curves  in- 
c r ea ses  with inc rease  of u. In the region of the values of pa ramete r s  at which the gradient  of the longi- 
tudinal veloci ty  does not change sign inside the gap, the profiles of these veloci t ies  have a point of in- 
f lection in the case  of complex shear.  The phenomenon of the inflection is explained by the effect of the 
t r ansve r se  velocity on the longitudinal by way of the effective viscosi ty.  Figure  2b shows the t r ansve r se  
veloci ty  profiles.  As we see f rom the figure,  the dependence of v 2 on ~ is weak. 

Figure  3 shows the effect of the veloci ty of rotat ion of the outer cylinder on the dependence of the 
dimensionless  flow ra te  Q1 along the x axis on the p res su re  gradient  A I. The point Q1 = 0 cor responds  com-  
pletely to closed emergence  f rom the extruder.  When A l = 0 the dimensionless  flow rate  does not depend 
on the rotat ional  velocity. 

For  compar i son  of the resul ts  obtained in simple and complex shears ,  Fig. 4 shows the curves  of the 
dependence of the dimensionless  flow ra te  of the fluid Q1 on the p re s su re  gradient A l for different values 
of n. The solid lines correspond to complex shear  and the dashed lines to simple. We see f rom the f igure 
that for pseudoplastic fluids at  the same values of the p re s su re  gradient,  the flow ra te  in the case of com-  
plex shear  is less  than in the case of simple shear .  This is explained by the fact  that during flow of a fluid 
under complex shear  conditions its effective v iscos i ty  is less than under simple shear  conditions, which 
leads to an increase  of the effect of counterpressure .  For  dilitant fluids the effective v iscos i ty  and the 
flow ra te  in the case of complex shear  will be g rea te r  than the corresponding values in the case of simple 
shear.  
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A c h a r a c t e r i s t i c  f ea tu re  of flow under complex shea r  conditions is the weaker  dependence of the 
d imens ion less  flow r a t e  on n in the absence  of c o u n t e r p r e s s u r e  (in Fig. 4 the solid curves  or ig inate  f r o m  
different  points on the y axis ,  but owing to the s m a l l n e s s  of the sca le  the la t ter  merge) .  On the whole the 
c h a r a c t e r  of the dependence of the flow r a t e  on the p r e s s u r e  gradient  in complex  shear  is m o r e  monotonic 
than in s imple  shear .  

Thus,  the flow of an exponential  fluid between two cyl inders  under complex shear  conditions gives  
a d i f ferent  p ic ture  of the veloci ty  d is t r ibut ion than in the case  of s imple  shea r ,  which at  ce r t a in  values  
of the p a r a m e t e r s  can have an effect  on the flow ra te .  Considera t ion  of the t r a n s v e r s e  flow is n e c e s s a r y  
if one is cons ider ing  the p rob lem of heat  t r a n s f e r  in the b a r r e l  of an ex t ruder  sc rew,  since the con t r ibu-  
t ion of the t r a n s v e r s e  component  of ve loc i ty  to d i ss ipa t ive  heating is cons iderable .  
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N O T A T I O N  

a r e  the cyl indr ica l  coordinates ;  
a r e  the d i rec t ions  along and a c r o s s  the s c r e w  b a r r e l ;  
a r e  the inner  and outer  radi i  of the cyl inders ;  
is the a v e r a g e  radius ;  
is  the helix angle; 
is the s t r e s s  t ensor ;  
is the s t r a in  r a t e  tensor ;  
a r e  the components  of the s t r e s s  t ensor ;  
is the effect ive v iscos i ty ;  
are the rheological constants; 
is the linear velocity of points of the outer cylinder; 
is the pressure; 
are the pressure gradients; 
is the dimensionless radius; 
are the dimensionless velocity components along axes c#, z, x, and y; 
is the radii ratio; 
is the pressure gradient ratio; 
is the dimensionless parameter; 
are the dimensionless volume flow rates along and across axis of barrel. 
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